
Statistical properties of conductance through a quantum dot in the Coulomb blockade regime

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 5833

(http://iopscience.iop.org/0953-8984/13/25/309)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 13:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/25
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OFPHYSICSPUBLISHING JOURNAL OF PHYSICS:CONDENSEDMATTER

J. Phys.: Condens. Matter13 (2001) 5833–5840 www.iop.org/Journals/cm PII: S0953-8984(01)19349-5

Statistical properties of conductance through a
quantum dot in the Coulomb blockade regime

Wei-Fei Li and Shi-Jie Xiong

National Laboratory of Solid State Microstructures and Department of Physics,
Nanjing University, Nanjing 210093, China

Received 22 November 2000, in final form 6 April 2001

Abstract
We investigate the statistical properties of the conductance through a quantum
dot in the Coulomb blockade regime. By taking into account the charging
energy we calculate the correlation function of conductance by the use of two
types of energy level distributions of the dot, the Poisson distribution and the
Wigner–Dyson distribution. In both cases, the conduction correlation obtained
as a function of the difference in occupation number shows similar behaviour,
decaying in the range where occupation differences are small, in agreement with
experiment, but exhibits different tail behaviour where occupation differences
are large.

1. Introduction

In the transport of electrons through a quantum dot, there are two basic physical ingredients
which play an important role: resonant tunnelling and Coulomb blockade. The levels of
the dot provide the bridge for the tunnelling so that the electrons in energies coincident with
the levels can tunnel easily from one electrode to the other. Due to the Coulomb blockade,
however, the resonant levels are shifted by the interaction. In the Coulomb blockade regime
the conductance exhibits alternate peaks and valleys by sweeping the gate voltage which tunes
the position of the levels. The spacing of the peaks depends on the energies of the resonant
levels of the dot plus the charging energy which is needed to overcome the Coulomb blockade.
Since the appearance of discrete energy levels of the dot is a result of quantum interference
determined by the size, shape, impurities, etc, the conductance will fluctuate if these factors
are varied. By applying a magnetic field to the dot and changing its strength over a range
one can obtain detailed information on the fluctuations of the dot because the additional phase
changes of the wavefunctions due to the magnetic field depend on the details of the randomness
on the dot and will shift the positions of the levels. In this way the mesoscopic fluctuations
of the elastic tunnelling in the valleys of the conductance is measured in [1] and studied
theoretically in [2]. The transient current of a quantum dot in the Coulomb blockade regime
is also measured to investigate the relaxation rate of spin and charge [3].

In this paper we investigate the fluctuations of the conductance of a quantum dot due to the
random distribution of energy levels. The effect of the Coulomb blockade is taken into account
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by using many-body states of the dot in an equivalent network for the Schrödinger equation.
We consider a quantum dot as weakly coupled to reservoirs. There are many levels on the
dot corresponding to a sequence of resonant peaks of the conductance in sweeping the gate
voltage. In the valleys the conductance is strongly suppressed due to the chargingenergy which
is needed to add electrons to the dot. However, an electron can tunnel through the dot via a large
number of virtual dot states, resulting in a residual conductance in the valleys. This tunnelling
process in the valleys is known as co-tunnelling [4] and may reflect some information about
the statistics of dot levels. We calculate the correlation function of the conductance in the
valleys and peaks by the use of two types of nergy level distribution, the Poisson distribution
and the Wigner–Dyson distribution. In both cases the conduction correlation obtained as a
function of the difference in the occupation number shows similar behaviour decaying in the
range of small occupation differences, in agreement with experiment, but the valley–valley
correlation exhibits different tail oscillations for large occupation differences, reflecting the
sensitivity to the level statistics.

In the next section we describe the used model and the basic formula. In section 3 we
present numerical results and compare them with the experiments. In the last section we give
a brief summary of conclusions.

2. The model and formula

We consider a quantum dot embedded between two reservoirs. We suppose that the reservoirs
have only one channel and can be described with a one-dimensional tight-binding model. The
Hamiltonian of the dot coupled to the reservoirs can be modelled as [5]

H = HR +HQD +HT (1)

whereHQD is the sub-Hamiltonian of electrons on the isolated dot,HR describes the motion
of electrons in the left and right reservoirs andHT represents the coupling between dot and
reservoirs. The sub-Hamiltonians can be written as

HR =
∑

m�=−1,0

t0(a
†
mam+1 + a†m+1am) +
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ε0a
†
mam (2)
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†
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t
(L)
i a

†
−1di + t(R)i a

†
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wheream anddi are annihilation operators of electrons on themth site of the reservoirs and the
ith bound state of the close dot, respectively,tL(R) is the coupling of a dot state to the contact
site of the left (right) reservoir, andN is the number of bound states. Here, the electrons on
the close dot are characterized by the level energyξi , the dot potentialV induced by the gate
voltage, and the charging energy in an effective capacitanceC. In reservoirs the electrons have
no interaction and are described by site energyε0 and hoppingt0. The chemical potential of
reservoirs is set to be the zero of energy. On the dot, we use a simple model with constant
interaction in which the total energy due to the electron–electron interaction solely depends
on the number of electrons on the dot. Such a charging energy is given bye2/2C invoking
the electrostatic energy of a classical capacitanceC. In this paper we are interested only in
the statistics of levels and omit the spin index of the electrons. In the following we calculate
transport properties of electrons by extending the method of the equivalent many-body state
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network proposed in [5] to the case of a disordered dot. We neglect the inelastic processes and
those processes that contain more than one electron in the leads. Thus the calculations are still
approximate. In particular, to deal with the non-equilibrium we assume local equilibrium on
dot, in the left and right leads, and use an approximate Landauer-like formula to calculate the
conductance in the linear-response regime. The disorder should be understood as caused by
randomly distributed scatterers, such as impurities and defects, or by shape irregularities. In
all cases the statistical properties of single-particle levels could be described by random matrix
theory (RMT) (for a review see [6]). Here we follow the theory of Kubo who postulated that
the levels are randomly distributed. The details of the level spectrum of an individual dot
would be determined by its precise geometry and the spatial locations of the atoms. Other
dot samples with similar size may have a different spectrum due to different shapes and atom
locations even though they have the same average level spacing�. In the statistical sense
one should establish a probability functionP(�) which specifies the distribution of the level
spacing of all the samples in a given ensemble. Typically, the Poisson and Wigner–Dyson
distributions are used. The former corresponds to the ‘disordered insulator’ and non-chaotic
level statistics, while the latter describes the properties of a ‘disordered metal’ and chaotic
features.

We consider the transmission of a single electron through the dot which hasM electrons
in levels below the chemical potential. By adding the tunnelling electron there are totally
M + 1 electrons in the relevant many-body states which are subjected to a constraint that there
is at most only one electron in the leads [5]. These states form a sub-Hilbert space, and we
use the following many-body wavefunctions as the basis

�m,L = a†m
{∏
i∈L
d
†
i

}
|0〉 (5)

�L′ =
{∏
i∈L′

d
†
i

}
|0〉 (6)

whereL andL
′
are sets ofM andM + 1 single-particle states of the close dot, respectively, and

|0〉 denotes the vacuum. A state in this subspace can be expressed as a liner combination of
basis functions

� =
∑
m�=0

∑
L

pm,L�m,L +
∑
L′
qL′�L′ . (7)

By applying the Hamiltonian on� one can get equations for coefficientspm,L andqL′ . By
solving these equations we obtain the transmission amplitude through the dot as

t (ε, V ) = −2it0SLR sink

(t0e−ik − SLL )(t0e−ik − SRR)− |SRL|2 (8)

where

Sλλ′ =
N∑

i=M1+1

t
(λ)∗
i t

(λ′)∗
i

ε − ξi − V − (2M1 + 1)e2/2C
(9)

ε = 2t0 cosk + ε0 (10)

with ε being the energy of the tunnelling electron which is regarded as free in reservoirs
andM1 labelling the lowest level occupied by electrons. When the temperature is non-zero,
there are many channels contributing to transport properties. If we only consider the elastic
scattering and all the states in the dot are not degenerate, these channels are independent and
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the contribution from each channel is the corresponding transmission coefficient multiplying
a statistical weight determined by the thermal probability. If the average level spacing� is
in the order ofkBT with T the temperature andkB the Boltzman constant, we only need to
take into account several low exciting states. The statistical weight of thejth channel can be
written as

Fj (T ) = exp(Ej/kBT )∑
i exp(Ei/kBT )

(11)

whereEj is the total energy of the many-bodystate in channelj, and the sum in the denominator
is over all the independent channels. We can calculate the conductance at temperatureT from
the transmission coefficient obtained by using the Landauer–Bütticker formula:

G(V, T ) = −e
2

h

∫
dε

[∑
j

Fj (T )|tj (ε, V )|2
]
∂f

∂ε
(12)

where f is the Fermi distribution of free electrons in the reservoirs andtj (ε, V ) is the
transmission amplitude of channelj. From this formula the conductance in the linear regime
with infinitesimal bias voltage is obtained. In the presence of interactions, it is valid at zero
temperature. At finite temperature, however, the approximation is well controllable if the
thermal excitation energy is much smaller than the charging energy(kBT 	 e2/2C) so that
the single-particle tunnelling picture is not much disturbed by the thermal excitations. As
the obtainedG(V, T) depends on the gate voltageV, the correlation function of the linear
conductance can be calculated as

C(V1, V2) = 〈G(V1)G(V2)〉 − 〈G(V1)〉〈G(V2)〉√
varG(V1)

√
varG(V2)

(13)

whereV1 andV2 are gate voltages. The averaging is taken over the distribution probability of
the ensemble. In the next section we will use both the Poisson and Wigner–Dyson distributions
and compare the obtained results with experiments.

Equation (12) could be extended to calculate the current in finite bias if we assume that the
dot is in local equilibrium with the Fermi level situated in the middle between Fermi levels of
the left and right reservoirs and neglect all inelastic processes. In this way the electric current
is approximately expressed as

I (Vb) = e

h

∫
dε

[∑
j

Fj (T )|tj (ε, Vb)|2
][
f

(
ε − eVb

2

)
− f

(
ε +

eVb

2

)]
(14)

whereVb is the bias voltage applied between two reservoirs. As pointed by Meir and Wingreen
[7], the calculation of the current in a relatively large bias at finite temperature in the presence
of interaction is a highly non-trivial problem, and should include a lot of excitations which
are hardly accounted for. In order to estimate the fluctuations of current due to disorder and
other disturbances of physical factors which are not taken into account in equation (14), we
calculate the variance of current as

var I (Vb) = 〈I (Vb)
2〉 − 〈I (Vb)〉2 (15)

where 〈. . .〉 denotes the ensemble averaging. This result is not used to compare with
experiments, but it can be used to estimate how the fluctuations of current grow with increasing
bias voltage.
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3. Numerical results

Firstly we calculate transport properties by using the Poisson distribution of level spacing

P(�) = 1

�
e−�/�. (16)

whereP(�)d� is the probability of finding the spacing of the adjacent levels in the interval
(�, �+ d�). In this distribution, the levels on the dot behave as independent random
variables. By using the formula given in the previous section we can calculate peak–
peak, peak–valley and valley–valley correlation functions for conductance and fluctuations
of current. The results for the correlation of conductance are shown in figure 1. HereN1 and
N2 are the occupation numbers of the dot, corresponding to gate voltagesV1 andV2 in equation
(13), respectively. It can be seen that valley–valley, peak–valley and peak–peak correlation
functions decay similarly as the difference of the occupation numbers increases in the rangeN2
– N1< 4. The decay rate is slightly different for these curves. The valley–valley correlation
function decays most slowly. The peak–peak correlation function reaches a negative value in
this range. In the experiments of [1], the average is taken over the applied magnetic fields. The
effect of the fields is to change the quantum interference of states within the dot. Thus, for the
dot with irregularities, sweeping the field will cause variations of dot levels which reflect the
nature of disorder of the dot. In comparison with figure 4(c) of [1], where only the correlation
functions in rangeN2 – N1< 4 are shown, we find that the calculated results are generally in
good agreement with the experimental data, except that the calculated correlations decrease
a little more quickly than the experimental ones. This may stem from the high probability
for the small level spacing in the Poisson distribution. In the rangeN2 – N1> 4, an apparent
difference of the peak–peak curve from the others appears. The valley–valley and peak–valley
correlation functions exhibit small fluctuations near zero, while the peak–peak correlation
increases from a negative value and approaches to zero. The transport at the peaks is produced
by the resonant tunnelling and the positions of peaks are mainly determined by the Coulomb
charging energy which is almost regular and independent of the randomness of the dot. This
results in the slow decay of the peak–peak correlation. At the same time, the transport at
the valleys is caused by the co-tunnelling, which is related to a group of dot levels and is
influenced by the level statistics and randomness. For the Poisson distribution the levels are
regarded as independent random variables, so the valley–valley and peak–valley correlations
approach zero more rapidly. Here the ensemble average is taken for the distribution of
levels.

We also calculate fluctuations of electric current varI . The result are plotted in figure 2.
It can be seen from equation (14) that, by increasing the absolute value of the bias voltage,
the transmission energy window is enlarged to include more resonant levels. This results in a
monotonic increase of current. However, the intensity of the fluctuations of current does not
increase monotonically with bias voltage, as can be seen in figure 2. There are peaks with
oscillating heights. The narrow peaks in figure 2 correspond to fluctuations of the contribution
from the new resonant level which is added to the energy window for increasing|Vb|. The
wider peaks between the narrow peaks represent current fluctuations in the co-tunnelling
channels, whose contributions are added to the window. The intensity of the narrow peaks
is decreased by enlarging the window because the summing over more contributions from
resonant levels suppresses fluctuations of the total current. However, flu!lactuations of the
co-tunnelling are enhanced as more co-tunnelling channels are participating in the transport on
enlarging the window. However, when the window is large enough, there are so many resonant
levels that the difference in fluctuations between the resonant tunnelling and the co-tunnelling
disappears. This result could be used to estimate how the fluctuations of current grow when
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Figure 1. The correlation function of conductanceC(N1, N2) versusN2 – N1 for the Poisson distri-
bution of the level spacing, whereN1 andN2 are the occupation numbers of the dot corresponding
to gate voltagesV1 and V2 in equation (13), respectively. (a) The valley–valley correlation
function. The average level spacing� = 0.000 0088t0. e2/2C = 0.00033t0. kBT = 0.000 0132t0.
t = 0.005t0. (b) The peak–valley correlation function.� = 0.000 0088t0. e2/2C = 0.000 33t0.
kBT = 0.000 0088t0. t = 0.005t0. (c) The peak–peak correlation function.� = 0.000 0132t0.
e2/2C = 0.000 33t0. kBT = 0.000 0088t0. t = 0.005t0.

the bias voltage is increased. The non-monotonic behaviour of the intensity is due to the very
weak coupling between the dot and the reservoirs(t 	 t0), which leads to small transmission
amplitudes, so that the tunnelling of electrons can be viewed as one by one even in a finite
bias voltage.

It is possible that quantum chaos appears in the presence of interactions among particles
in a system [8–10]. From the classical point of view, in the absence of the interaction, the
energy of every single particle is a constant of motion, and therefore the problem is integrable.
The inclusion of the Coulomb interactions breaks the conservation of the energies of the single
particles and leads to an irregular dynamics in a confined system. As a result the trajectory
of a particle in the phase space may cover all parts of space. From the viewpoint of quantum
mechanics this situation corresponds to the extended state in a disordered metal, and the
distribution of the level spacing is characteristic of a Wigner–Dyson function

P(�) = π�

2�
2 exp

(
−π�

2

4�
2

)
(17)
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Figure 2. The variance of the electric current as a function of the bias voltage. The gate voltage
is zero. The other parameters are the same as those in figure 1(a). Here only the data forVb < 0
are shown.
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Figure 3. The correlation function of the conductanceC(N1, N2) plotted againstN2 – N1 for
a Poisson distribution of the level spacings. The parameters are the same as those used in
figure 1. (a) The valley–valley correlation function. (b) The peak–valley correlation function. (c)
The peak–peak correlation function.
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where� is the average level spacing as used in the Poisson distribution. Adopting the Wigner–
Dyson distribution, we calculate the correlation function of conductance. The results are
shown in figure 3. It can be seen that in the range ofN2 – N1 < 4 the general behaviour
of the curves is only slightly changed from that of the Poisson distribution. In range
N2 – N1 > 4 an apparent deviation appears in the rangeN2 – N1 > 4, where the valley–
valley correlation shows long-tail oscillations. Since the valley–valley correlation reflects
information about the levels participating in the co-tunnelling, such long-tail fluctuations can
be regarded as a characteristic of the Wigner–Dyson distribution. In fact, it reflects the intrinsic
correlation among levels in the Wigner–Dyson distribution. In the Poisson distribution the
levels are nearly independent random variables, so there are no long-tail oscillations in figure 1.

4. Conclusions

In this paper we have presented calculations of fluctuations of current and correlation functions
of conductance in a quantum dot by taking into account both the Coulomb blockade effect
and the distribution of dot levels. We have obtained numerical results by the use of two types
of distribution for the energy levels on the dot, the Poisson distribution and Wigner–Dyson
distribution. The correlation functions in both cases show similar behaviour: decaying in
the range of small differences in the occupation number, in agreement with experiment, but
the valley–valley correlation exhibits distinguishing long-tail oscillations for large occupation
differences in theWigner–Dyson distribution. The results for current fluctuations indicate
different behaviour between the resonant peaks and valleys. For the former, the contribution
to the transport is mainly from one resonant level. For the latter, more levels participate in the
tunnelling, thus properties are more closely related to the level statistics on the dot.
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